

ENCLOSED HANDPIECE

ADVANCED CONTAINMENT, FUTURE-READY SAFETY.

www.buffalodental.com

About Us

Buffalo Dental Manufacturing is dedicated to providing highquality dental products that enhance the practice of dentistry. With a commitment to innovation and excellence, we strive to support dental professionals with reliable solutions tailored to their needs.

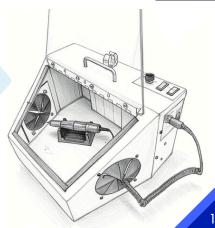
Our dedicated team ensures every product meets the highest quality standards. We strive to enhance patient care through exceptional dental manufacturing. Discover our superior tools designed to elevate your cutting experience and exceed your expectations

Safety and Toxin Prevention

The Buffalo V35E's enclosed design traps harmful particles and toxins from 3D prosthetics, ensuring a safer workspace.

Built-In Filtration System

The V35E's integrated filtration system captures debris by circulating it in a closed environment, stopping it from escaping into open air.


Advanced Dental Technology

The V35E offers precise control, faster workflow, and long-lasting performance in a compact, easy-to-use design—helping labs work more efficiently and affordably.

PLAY IT SAFE. CHOOSE THE ENCLOSED V35E.

3D PRINTER PROBLEMS & OUR SOLUTION

3D-printed dental prosthetics are advancing quickly, but while the surface is safe, the interior may contain partially cured material. Grinding or finishing can release residual toxins, posing health risks without proper protection.

OUR IDEA

Fully enclosed micromotor that protects from harmful particles released during 3D prosthetic grinding and finishing.

PREVENTION

The Buffalo V35E's
enclosed design
contains dust, fumes,
and toxins from 3D
prosthetics, ensuring a
safer workspace.


WHY V35E?

The Buffalo V35E delivers precision, speed, and durability in a compact design for efficient, affordable lab work.

DEGREE OF CONVERSION IN 3D PRINTED PROSTHETICS

Buffalo Dental Research Analysis

The chemistry of 3D-printed dental materials involves several potentially toxic compounds that may remain in the final product. When grinding or customizing restorations, these substances can appear in dust particles. Safety Data Sheets often list ingredients as "Proprietary," so exact compositions are unknown.

Common chemicals include phosphine oxides and acrylic monomers. The Degree of Conversion—the percentage of monomer polymerized—typically ranges from 50–80%, meaning unreacted, toxic monomers may remain. Post-curing can improve conversion but does not eliminate all residues.

Photo-initiators and phosphine compounds often persist in the cured material, as they are not fully consumed or removed during processing. Post-curing and washing can reduce, but not completely eliminate, their presence—especially below the surface.

DON'T WAIT

Protect Your Workspace & Team Today

Safety Designed For You.

SAFETY, CLEANLINESS & EFFICIENCY

Elevate Your Dental Manufacturing To The Next Level **BUY NOW**

sales@mailbdm.com

+1 (516) 496 - 7200

Buffalo Dental Manufacturing Co.

(P)

References

- Alifui-Segbaya, F., Varma, S., Lieschke, G. J., & George, R. (2017). Biocompatibility of Photopolymers in 3D Printing. 3D Printing and Additive Manufacturing, 4(4), 185–191. https://doi.org/10.1089/3dp.2017.0064
- Berghaus, E., Klocke, T., Maletz, R. et al. Degree of conversion and residual monomer elution of 3D-printed, milled and self-cured resin-based composite materials for temporary dental crowns and bridges. J Mater Sci: Mater Med 34, 23 (2023). https://doi.org/10.1007/s10856-023-06729-z
- Busch, M. (2022, May 20). How 3D-printed resins stack up against traditional ones. DrBicuspid.com. https://www.drbicuspid.com/dental-specialties/smile-design/restorations/article/15379461/how-3d printed-resins-stack-up-against-traditional-ones
- Claire-Adeline DANTAGNAN, Philippe FRANÇOIS, GOFF, S. L., ATTAL, J.-P., & DURSUN, E. (2022). Degree of conversion of 3D printing resins used for splints and orthodontic appliances under different post-polymerization conditions. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-1661000/v1
- Kim, G.-T., Go, H.-B., Yu, J.-H., Yang, S.-Y., Kim, K.-M., Choi, S.-H., & Kwon, J.-S. (2022). Cytotoxicity, Colour Stability and Dimensional Accuracy of 3D Printing Resin with Three Different Photoinitiators. *Polymers*, 14(5), 979. https://doi.org/10.3390/polym14050979
- Kowalska, A., Sokolowski, J., & Bociong, K. (2021). The Photoinitiators Used in Resin Based Dental Composite—A Review and Future Perspectives. *Polymers*, 13(3), 470. https://doi.org/10.3390/polym13030470
- Kurzmann, C., Janjić, K., Shokoohi-Tabrizi, H., Edelmayer, M., Pensch, M., Moritz, A., & Agis, H. (2017). Evaluation of Resins for Stereolithographic 3D-Printed Surgical Guides: The Response of L929 Cells and Human Gingival Fibroblasts. *BioMed research international*, 2017, 4057612. https://doi.org/10.1155/2017/4057612
- Lively, T. (2023, July 5). Safety Tips for In-House 3D Printing Labs Every Dental Practice Should Know. Dental Products Report, Dental Products Report. https://www.dentalproductsreport.com/view/safety-tips-for-in-house-3d-printing-labs-every-dental-practice-should-know
- Min, K., Li, Y., Wang, D., Chen, B., Ma, M., Hu, L., Liu, Q., & Jiang, G. (2021). 3D Printing-Induced Fine Particle and Volatile Organic Compound Emission: An Emerging Health Risk. *Environmental Science & Technology Letters*, 8(8), 616–625. https://doi.org/10.1021/acs.estlett.1c00311
- Nam, N. E., Hwangbo, N. K., Jin, G., Shim, J. S., & Kim, J. E. (2023). Effects of heat-treatment methods on cytocompatibility and mechanical properties of dental products 3D-printed using photopolymerized resin. *Journal of prosthodontic research*, 67(1), 121–131. https://doi.org/10.2186/jpr.JPR_D_21_00345
- News-Medical. (2021, January 29). News-Medical. News-Medical. https://www.news-medical.net/news/20210128/3D-printable-resins-used-in-dental-applications-may-be-toxic-to-reproductive-health.aspx
- Rengarajan, V., Clyde, A., Pontsler, J., Valiente, J., Peel, A., & Huang, Y. (2023). Assessing Leachable Cytotoxicity of 3D-Printed Polymers and Facile Detoxification Methods. 3D printing and additive manufacturing, 10(5), 1110–1121. https://doi.org/10.1089/3dp.2021.0216
- Wpengine. (2025, July 29). Speciality Appliances. Specialty Appliances. https://specialtyappliances.com/invisible-threat-how-uncontrolled-3d-printing-post-processing-lead s-to-toxic-orthodontic-appliances/

